
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Implementation of the Unified Particle Physics with a focus on Fluids
(liquids, gases, and fluid-solid coupling) in 2D

MOHANNA SHAHRAD,McGill University

This project presents a unified dynamics framework and particle solverwith a
specific focus on modelling fluids (liquids and gases) and fluid-solid coupling
based on the work in Macklin et al. [2014]. Multiple types of constraints and
particle phases are defined with the motivation to treat their contact and
collision in the same unifies way. The proposed solver is primarily based on
position-based dynamics [Müller et al. 2007].

Code: https://github.com/mohannashahrad/COMP559_FinalProject
Video: https://youtu.be/d7wpPL1Bw60 or

https://tinyurl.com/MohannaShahradCOMP559Project

Additional Key Words and Phrases: fluid, simulation, unified solver, fluid-
solid coupling

ACM Reference Format:
Mohanna Shahrad. 2023. Implementation of the Unified Particle Physics
with a focus on Fluids (liquids, gases, and fluid-solid coupling) in 2D. 1, 1
(April 2023), 4 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Unified solvers capable of simulating different types of objects have
become popular visualization tools mainly because having a sin-
gle unified dynamics framework results in less code generation,
maintenance and optimization cost reductions Macklin et al. [2014].
Furthermore, unified solvers make the fully coupled interaction
between different types of objects more feasible. This project ex-
plores and implements the unified simulation approach introduced
in Macklin et al. [2014] primarily for liquids and gasses. The key
that enables us to treat contact and collisions in a unified manner is
to use particle representations connected by different categories of
constraints as the primary building block. In METHODS section, we
go through implementation details and in RESULTS, we explore the
performance and scalability of the proposed solver.

2 RELATED WORK
This project is based on the work of Macklin et al. [2014] that
presents a unified dynamics framework for real-time visual effects.
Specifically, this work focuses primarily on section 7 of Macklin
et al. [2014], which describes the details of simulating fluids (liquids
and gasses) in the unified framework. Algorithms and approaches
from Macklin and Müller [2013] and Müller et al. [2003] are heavily
used to implement the position-based dynamics and constraints in
the proposed framework.

Author’s address: Mohanna Shahrad, McGill University, mohanna.shahrad@mail.mcgill.
ca.

2023. XXXX-XXXX/2023/4-ART $15.00
https://doi.org/0000001.0000001

3 METHODS

3.1 Particle Representation
In this project, all object types are represented by particles. The
simplicity of such a representation brings flexibility regarding the
wide range of categories of objects to be implemented. The core
properties of particles are as follows. We use two global param-
eters PARTICLE_RAD and PARTICLE_DIAMETER (with fixed values
per scene) to control the displayed size of particles. A property
called phase is added to the particles to categorize them into mul-
tiple groups, each with its own set of properties, functions, and
constraints.

enum Phase {
FLUID,
GAS,
RIGID,
NUM_PHASES

};

3.2 Constraint Groups
Similar to the way Phase organizes particles into multiple groups,
we introduce ConstraintGroup to differentiate between different
constraints that need to be maintained and solved in the simula-
tion step. This work does not focus on rigid and deformable bodies,
so their constraints are not considered below. However, having
ConstraintGroup concept make the framework flexible and scal-
able with other types of constraints that the end user wants to
include.

enum ConstraintGroup {
CONTACT,
GENERAL,
NUM_CONSTRAINT_GROUPS

};

3.3 Smoothing Kernels
Before going in-depth into the implementation details, mentioning
the smoothing kernels used in simulating fluids and gases in this
project is noteworthy. Similar to density equations in Müller et al.
[2003], the proposed solver uses Poly6 kernel for fluid density es-
timation and spiky Kernel for gradient calculation that are called
from the constraints project routines.

𝑊𝑝𝑜𝑙𝑦6 (𝑟, ℎ) =
{

315
64𝜋ℎ9 (ℎ2 − 𝑟2)3, 0 ≤ 𝑟 ≤ ℎ

0, otherwise

𝑊𝑠𝑝𝑖𝑘𝑦 (𝑟, ℎ) =
{

15
𝜋ℎ6 (ℎ − 𝑟)3, 0 ≤ 𝑟 ≤ ℎ

0, otherwise

, Vol. 1, No. 1, Article . Publication date: April 2023.

https://github.com/mohannashahrad/COMP559_FinalProject
https://youtu.be/d7wpPL1Bw60
https://tinyurl.com/MohannaShahradCOMP559Project
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

:2 • Shahrad, M.

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Algorithm 1 Projection Alg. in Fluid Density Constraints
1: Clear the old 𝜆𝑖 values
2: Compute updated 𝜆𝑖 values with 𝜆𝑖 = − 𝐶𝑖 (𝑝1,..,𝑝𝑛)∑

𝑘 |∇𝑝𝑘𝐶𝑖 |2+𝜖
where

{𝑝1, .., 𝑝𝑛 } are the neighboring particle positions, 𝜌0 is the rest den-
sity, 𝜌𝑖 =

∑
𝑗

Poly6(𝑝𝑖−𝑝 𝑗 ,ℎ)
𝑀−1

𝑗

is the density estimator of the i’th particle,

𝐶𝑖 (𝑝1, .., 𝑝𝑛) = 𝜌𝑖
𝜌0

− 1 is the density constraint on the i’th particle, and
𝜖 is a constant relaxation parameter set to 0.01.

3: Compute the total position update Δ𝑝𝑖 values where Δ𝑝𝑖 = 1
𝜌0

∑
𝑗 (𝜆𝑖 +

𝜆𝑗 + correctionTerm)∇SpikyGrad(𝑝𝑖 − 𝑝 𝑗 , ℎ) , and correctionTerm =

−0.1(Poly6((𝑝𝑖−𝑝 𝑗 ,ℎ)
0.04ℎ2)4 using the suggested constant parameter values

in Macklin and Müller [2013].
4: For each particle, update position using the derived position update

from the previous step.

3.4 Two-phase liquid Simulation
One of the proposed simulation scenes demonstrates a two-phase
liquid with a density ratio of r showing the Rayleigh-Taylor insta-
bility. A new fluid constraint is created and added to the system
for each fluid with a different density. Later, the project subroutine
of fluid constraints will be called in the main simulation loop to
adjust the particles’ velocities and positions. This project subroutine
is based on Algorithm 1 of Macklin and Müller [2013] with slight
simplifications. Algorithm 1 shows the high-level performed steps.

3.5 Gas Simulation
Macklin et al. [2014] proposed a fully Lagrangian approach for
simulating gases based on position-based fluids. This project has
two separate scenes for simulating gas/smoke particles, one with a
closed boundary and the other with an open boundary.

3.5.1 Closed Boundaries. In this case, the closed environment is
first filled by FLUID particles with a constant mass of 1. Then the
GAS particles get created from a Gas Injector at a fixed position, and
gravity is reduced for them by GRAVITY_REDUCTION_ALPHA factor.
The gas constraint in the proposed solver is a unilateral density
constraint to keep the rest density 𝜌0 fixed.

The velocity of GAS particles are derived using a weighted average
over FLUID particles as shown in Equation (28) of Macklin et al.
[2014].

𝑣𝑝𝑠 =

∑
𝑗 𝑣 𝑗poly6(𝑝𝑠 − 𝑝 𝑗)∑
𝑗 poly6(𝑝𝑠 − 𝑝 𝑗)

where 𝑣𝑝𝑠 is the velocity of the GAS particle at position 𝑝𝑠 and 𝑣𝑝 𝑗

is the velocity of the FLUID particle at position 𝑝 𝑗 .

3.5.2 Open Boundaries. The base of GAS and FLUID particles in
open boundaries is similar to what we covered in closed environ-
ments. However, in this case, the injector emits both GAS and FLUID
particles with the new FLUID particles having a higher velocity than
those already existing in the environment. For the best visual effects,
it should always be the case that GAS particles are surrounded by
a thick layer of FLUID particles around their emission point. As
Equation (29) of Macklin et al. [2014] suggests, a drag force is used
to simulate the effect of fast-moving interior particles with their

Algorithm 2 Main Simulation Loop
1: For all particles:

• Update forces and velocity based on any external forces
• For GAS particles, consider reducing gravity by
GRAVITY_REDUCTION_ALPHA factor.

• Predict position based on the computed velocity and store it into
p->ep

• ApplyMass Scaling as explained in Macklin et al. [2014]’s equation
(29).

2: For all particles:
• Find the neighboring particles 𝑁𝑖

• Find if there is any solid contact in 𝑁𝑖 .
• Check particle’s position and if needed add a Boundary Constraint
to the local copy of the system’s constraints.

3: For all constraint groups:
• Solve them and update counter parameter𝑛. (We call the projection
function in each constraint SOLVER_ITRS times)

4: For all particles:
• Update velocity and position based on the results of solving con-
straints.

• Add any internal forces such as f_vortocity or f_drag.
• Update position based on the changes made to velocity.

5: For all injectors in the system:
• Call their simulation loop to create new smoke or FLUID particles.
• Run boundary checks for the new particles one more time.

surroundings.
𝑓𝑑𝑟𝑎𝑔𝑖 = −𝑘 (𝑣𝑖) (1 −

𝜌𝑖

𝜌0
)

where 𝑘 is a parameter to be tuned.
As also mentioned in Macklin et al. [2014], fluid particles can

be removed once they have no smoke particles within their kernel
radius or after a pre-defined lifetime. This project assumes that the
user will interact with the simulator to stop the simulation once
the FLUID particles escape the environment. One last note on gases
in open boundaries is that there should be a sufficient number of
sampling of fluid particles to enable the simulator to accurately
estimates velocity for smoke advection.

3.6 Simulation Loop Algorithm
Algorithm 2 shows the high level of the steps done in the main
simulation loop, which is based on Algorithm 1 of Macklin et al.
[2014]. (Note that even though the work in this project is mainly on
fluids, gasses, and coupling, some of the rigid body’s contact steps
in the algorithm is also included to show the end user the possibility
of adding them to the framework in future)

4 RESULTS
Figure 1 and 2 show simulator results for the two-phase liquid exper-
iment (showing Rayleigh-Taylor instability) with different density
ratios. Figure 3 demonstrates four different scenes in simulating
gas in an open-boundary environment. It is interesting to observe
the effect of fluid density, injection speed, and the number of sur-
rounding |FLUID particles on the velocity update of the system’s
particle.
Similarly, figure 4 demonstrates four scenes simulating gas in a

closed environment. An interesting observation is that the more

, Vol. 1, No. 1, Article . Publication date: April 2023.

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Implementation of the Unified Particle Physics with a focus on Fluids (liquids, gases, and fluid-solid coupling) in 2D • :3

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

(a) Timestamp t1 (b) Timestamp t2

(c) Timestamp t3 (d) Timestamp t4

Fig. 1. Two-phase liquid example. Density_Green = 1 and Density_Blue = 2

the number of FLUID particles around the injection point of smoke
(small white particles), the better the velocity update of smoke
particles would be. You can also observe the effect of the FLUID
density in the environment on how the velocity field of smoke
particles would change.

Aside from the visual results of the simulator, figure 5 represents
the average execution time of the main simulation loop 2 with the
motivation of assessing performance. As shown in figure 5, with
the growing number of particles in the simulation, the average time
needed for each main loop iteration gets larger. However, it should
be mentioned that the algorithms and approaches introduced in
Macklin et al. [2014] should ideally run on GPU to leverage the
parallel solver speedup. Given that this project was tested on CPU,
it was expected that performance would drop with the growing size
of the system.

5 CONCLUSIONS
This project proposes a unified particle solver based on the work
done in Macklin et al. [2014] to simulate liquids, gases, and fluid-
solid coupling. As discussed before, modelling objects with particles
connected by different types of constraints is the key to achieving
the unified behaviour of the framework. It was also observed that the
performance of the gas simulation (in open and closed) boundaries
is tightly connected to the number of FLUID particles around them.
There should be a sufficient sampling of FLUID particles to provide
accurate velocity estimates for smoke particles’ advection. Therefore,
this approach might not produce good visual results if used for long-
range effects.

(a) Timestamp t1 (b) Timestamp t2

(c) Timestamp t3 (d) Timestamp t4

Fig. 2. Two-phase liquid example. Density_Green = 1.6 and Density_Blue =
1

(a) Density = 1.5, Injecting 15 par-
ticles per second

(b) Density = 2, Injecting 15 parti-
cles per second

(c) Higher number of fluid parti-
cles in the environment

(d) Density = 1.5, Injecting 30 par-
ticles per second

Fig. 3. Simulating gas particles in open boundaries

REFERENCES
M. Macklin and M. Müller. 2013. Position based fluids. ACM Transactions on Graphics

(TOG) 32, 4 (2013), 1–12.
M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. 2014. Unified particle physics for

real-time applications. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–12.
M. Müller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interac-

tive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium

, Vol. 1, No. 1, Article . Publication date: April 2023.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

:4 • Shahrad, M.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

(a) Density = 1, Injecting 15 parti-
cles per second

(b) Density = 1.5, Injecting 15 par-
ticles per second

(c) Density = 1.6, with 256 GAS
particles around smoke

(d) Density = 1.6, with 324 GAS
particles around smoke

Fig. 4. Simulating gas particles in open boundaries

(a) Average execution time of Two-
Phase fluid main simulation’s
loop per number of particles

(b) Average execution time of
closed-boundary gas simulation’s
loop per number of particles

Fig. 5. Performance Analysis

on Computer animation. Citeseer, 154–159.
M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position based dynamics.

Journal of Visual Communication and Image Representation 18, 2 (2007), 109–118.

, Vol. 1, No. 1, Article . Publication date: April 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Particle Representation
	3.2 Constraint Groups
	3.3 Smoothing Kernels
	3.4 Two-phase liquid Simulation
	3.5 Gas Simulation
	3.6 Simulation Loop Algorithm

	4 Results
	5 Conclusions
	References

